Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Validating internal controls for quantitative plant gene expression studies.

Identifieur interne : 004169 ( Main/Exploration ); précédent : 004168; suivant : 004170

Validating internal controls for quantitative plant gene expression studies.

Auteurs : Amy M. Brunner [États-Unis] ; Igor A. Yakovlev ; Steven H. Strauss

Source :

RBID : pubmed:15317655

Descripteurs français

English descriptors

Abstract

BACKGROUND

Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed.

RESULTS

Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied.

CONCLUSION

Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.


DOI: 10.1186/1471-2229-4-14
PubMed: 15317655
PubMed Central: PMC515301


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Validating internal controls for quantitative plant gene expression studies.</title>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Science, Oregon State University, Corvallis, OR 97331-5752, USA. Amy.Brunner@oregonstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Science, Oregon State University, Corvallis, OR 97331-5752</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yakovlev, Igor A" sort="Yakovlev, Igor A" uniqKey="Yakovlev I" first="Igor A" last="Yakovlev">Igor A. Yakovlev</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15317655</idno>
<idno type="pmid">15317655</idno>
<idno type="doi">10.1186/1471-2229-4-14</idno>
<idno type="pmc">PMC515301</idno>
<idno type="wicri:Area/Main/Corpus">004222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004222</idno>
<idno type="wicri:Area/Main/Curation">004222</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004222</idno>
<idno type="wicri:Area/Main/Exploration">004222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Validating internal controls for quantitative plant gene expression studies.</title>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Science, Oregon State University, Corvallis, OR 97331-5752, USA. Amy.Brunner@oregonstate.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Science, Oregon State University, Corvallis, OR 97331-5752</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yakovlev, Igor A" sort="Yakovlev, Igor A" uniqKey="Yakovlev I" first="Igor A" last="Yakovlev">Igor A. Yakovlev</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Linear Models (MeSH)</term>
<term>Populus (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Plant (isolation & purification)</term>
<term>Reference Standards (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (methods)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (standards)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>ARN des plantes (isolement et purification)</term>
<term>Analyse de variance (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Gènes de plante (génétique)</term>
<term>Modèles linéaires (MeSH)</term>
<term>Normes de référence (MeSH)</term>
<term>Populus (génétique)</term>
<term>RT-PCR (méthodes)</term>
<term>RT-PCR (normes)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Gènes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>ARN des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>RT-PCR</term>
</keywords>
<keywords scheme="MESH" qualifier="normes" xml:lang="fr">
<term>RT-PCR</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Gene Expression Regulation, Plant</term>
<term>Linear Models</term>
<term>Reference Standards</term>
<term>Reproducibility of Results</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de variance</term>
<term>Facteurs temps</term>
<term>Modèles linéaires</term>
<term>Normes de référence</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15317655</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>05</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<PubDate>
<Year>2004</Year>
<Month>Aug</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Validating internal controls for quantitative plant gene expression studies.</ArticleTitle>
<Pagination>
<MedlinePgn>14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brunner</LastName>
<ForeName>Amy M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Science, Oregon State University, Corvallis, OR 97331-5752, USA. Amy.Brunner@oregonstate.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yakovlev</LastName>
<ForeName>Igor A</ForeName>
<Initials>IA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>08</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012015" MajorTopicYN="N">Reference Standards</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000592" MajorTopicYN="Y">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-4-14</ArticleId>
<ArticleId IdType="pii">1471-2229-4-14</ArticleId>
<ArticleId IdType="pmc">PMC515301</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1999 Jan;26(1):112-22, 124-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9894600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2002 Aug;29(1):23-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2002 Dec 20;271(1-2):113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Dec;32 Suppl:509-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12454646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2003 Jan 15;12(2):163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12419855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Mol Brain Res. 2003 Apr 10;112(1-2):182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12670717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2003 Apr;17(4):789-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(4):210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 2003 May;52(Pt 5):403-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):386-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846608</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<name sortKey="Yakovlev, Igor A" sort="Yakovlev, Igor A" uniqKey="Yakovlev I" first="Igor A" last="Yakovlev">Igor A. Yakovlev</name>
</noCountry>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004169 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004169 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15317655
   |texte=   Validating internal controls for quantitative plant gene expression studies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15317655" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020